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Fig. 3.1. The passage of an energetic ion in a solid during an ion implantation
experiment, showing the total ion path and the projected range, R;. As the ion
transverses the solid, it undergoes collisions with the stationary target atoms,
] which deflect the ion from its initial direction.
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direction are due to the ion’s collision with individual lattice atoms. In
this chapter we will focus on two-body collisions or binary collisions
involving energetic ions and target atoms.

The simplest collision event is the collision between a charged
particle and the atomic nucleus. This can be treated as a two-body
collision provided that the mean free path between collisions is much
greater than the interatomic spacing. The chance of correlation effects
due to neighboring atoms recoiling simultaneously is then very small.
The momentum of the recoiling target atoms is the parameter which
determines the amount of damage that occurs in the solid target. The
momentum transferred to the recoiling atom is also responsible for a
large portion of the energy-loss process of the ion.

In developing our understanding of ion-solid interactions for the
purposes of ion beam modification of materials, we will first derive
some general relations governing two-body collisions, considering only
the asymptotic values of momentum at great distances from the
collision. The principles of conservation of momentum and energy are
all that are required to obtain recoil energy as a function of recoil
angle. We shall assume that collisions are elastic and, further, that
velocities are small enough for non-relativistic mechanics to apply.

3.2 Classical scattering theory

The following assumptions are usually made in the description of the
scattering processes between energetic particles in solids (Sigmund,
1972):

(a) two-atom collisions only are considered;

(b) classical dynamics is applied;

(c) excitation or ionization of electrons only enters as a source of
energy loss, but does not influence the collision dynamics;

(d) one of the two colliding atoms is initially at rest;

Assumption (a) is appropriate for violent collisions. Violent colli-
sions between atoms of reasonably high energy range (keV) require
the collision partners to approach very closely, so that the probability
for three-or-more-particle collisions is small. Soft collisions can take
place at large distances, and therefore can involve more than two
atoms simultaneously. However, soft collisions can usually be treated
by perturbation theory (the momentum or impulse approximation, see
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Section 4.4), in which case no restriction to binary collisions is neces-
sary. At lower energies (below 1keV), collective effects become
increasingly important and assumption (a) starts to break down. How-
ever, the problems associated with many-body collisions in this low-
energy regime can be overcome by molecular-dynamic simulations
where assumption (a) is not required.

In the limit of assumption (b), the applicability of classical mechanics
is normally limited to specific quantities, one of which is the differen-
tial scattering cross-section do(6.), where 6. is the center-of-mass
scattering angle.

Neglecting the effect of electronic excitation on the collision dynam-
ics, assumption (c) is justified if either the energy transferred to
electrons is small compared with the exchange of kinetic energy
between the atoms (so that the scattering angle can be calculated by
assuming elastic collisions), or if no appreciable deflection takes place.
In either case, the electronic energy loss enters as a superimposed
energy absorption.

The assumption of one collision partner being at rest initially,
assumption (d), has been made in all previous work except molecular-
dynamics computations. It is not fulfilled in very dense collision
cascades, especially when the process of energy dissipation has pro-
ceeded to the point where most of the atoms in the cascade are in
motion.

3.3 Kinematics of elastic collisions

The energy transfers and kinematics in elastic collisions between two
isolated particles can be solved fully by applying the principles of
conservation of energy and momentum. We consider those collisions as
elastic in which the kinetic energy is conserved. An inelastic collision
does not conserve kinetic energy; an example is the promotion of
electrons to higher-energy states in collisions where substantial K-shell
overlap occurs. The energy lost in promoting the electrons is not
available in the particle-atom kinematics after collision. In this chapter
we consider only elastic processes in ion—solid interactions. In Chapter
5 we will discuss the inelastic aspects of the collision process.

For an incident energetic particle of mass M, the values of the
velocity and energy are vy and Ey (Ey = (1/2)M 1u3), while the target
atoms of mass M, are at rest. After the collision, the values of the
velocities vy and v, and energies E; and E; of the projectile and target
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atoms, respectively, are determined by the scattering angle 6 and
recoil angle ¢. The notation and geometry for the laboratory system of
coordinates are given in Fig. 3.2. Table 3.1 lists those symbols used in
kinematic expressions.

Conservation of energy and conservation of momentum parallel and
perpendicular to the direction of incidence are expressed by the
equations

Eo = 3Mv) = M0} + 1My03 (3.1
Mivy = Myv;cos 6 + M,v,cos ¢ 3.2)
0= Myv;sin @ — M,v,sin ¢ (3:3)

These three equations, (3.1)-(3.3), can be solved in various forms.
For example, transposing the first term on the right to the left side in
Egs. (3.2) and (3.3), squaring and adding, will eliminate ¢, giving

(M30,)* = (M1v5)? + (M10,)? = 2M?vgv; cos 6 (3.4)

Substituting Eq. (3.4) into Eq. (3.1) to eliminate Uy, one finds the ratio
of the particle’s velocity before the collision to that after the collision:
2 i 12

it —Lcos i [(L) cos’ 0 + MJ (3:5)

12 M1+M2 M1+M2 M1+M2
Eq. (3.5) can be used with Eq. (3.4) to determine vy and E,, and it can
be used with Eq. (3.2) to find the angle of recoil, ¢, of the scattered
target atom.

If M, > M,, the quantity under the radical in Eq. (3.5) will be zero
for 6 = 6,,, where 6,, is found from:

M2
S I RN (3.6)
M3 2

For 6 > 6, (and 6 <), v,/v, is either imaginary or negative, neither
of which is physical, so that 6, represents the maximum angle through
which M, can be scattered.

For the condition M; < M,, all values of 6 from 0 to 7 are possible,
and a positive value for v;/v, results if the plus sign in Eq. (3.5) is
chosen. Choice of the minus sign in this equation leads to negative
values of v,/v,, which is physically unrealistic. The ratio of the
projectile energies for M; < M,, where the plus sign holds, is

Ey . [(M% — M3sin® 6)Y2 + M, cos e]z
Iy M, + M,

Additional relationships between energy and scattering angles are
given in Table 3.2.

(3.7)
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Table 3.1. Definitions and symbols used in collision kinematics

Ey energy of the incident projectile

& total kinetic energy in the center-of—mgss system

E4 laboratory energy of the scattered projectile

E, laboratory energy of the recoiling target

&z energy E, transferred to the target atom it

0. center-of-mass variable scattering angle defined in Fig. 3.7

K backscattering kinematic factor E;/E,

M, mass of the incident projectile

M, mass of the target particle

M, reduced mass in center-of-mass system

u mass ratio M/M, i :

Vo velocity of the incident projectile in laboratory coordu_lates

V1 velocity of the scattered projectile in laboratory cpordmates

vy velocity of the recoiling atom in laboratory coordlnat.es

Ve velocity of the reduced mass iq ceqter-qf—mass coordinates g
Uion velocity of the incident projectile (ion) in center-of-mass coordinates

velocity of the target atom in center-of-mass coordinates

v
Hmm laboratory angle of the scattered projectile

0, center-of-mass angle of the scattered projectile

0 maximum laboratory angle for M, scattering (M > M)
¢ laboratory angle of the recoiling target atom

P center-of-mass angle of the recoiling target atom

m 7 =180°= 6, + ¢

@At Rest

\/

Eyv

Before

Eq.vy
VA
___________________ %... s G o i et B
After ¥/
E2,v2

Fig. 3.2. Elastic collision diagram between two unequal masses as seen in the
laboratory reference frame.
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Table 3.2. Relationships between energy and scattering angles

Centre-of-mass energy E.= M2Eq i, = My
M+ M, 65 o M,
2 einiaN1212
Laboratory energy of the K = i _ [ucos8 + (1 - psin 6)\7]
scattered projectile for E, (1 + w?
it b WhenM1=M2,9<%

Ey _ [ucos8 + (1 — u?sin? 6)12]2

Laboratory energies of the

scattered projectile for Eg (L w?

M, > M, 0 < sin~!(1/u)

Laboratory energy of the . =1- - = Mcosz ¢
recoil nucleus Eo Ey (M;+ My)?

e LR S | ELIEN (ﬂ)
(1+ p? (1+ p? 2

T
where ¢ < —
2

Ay 12
Laboratory angle of the recoil ¢ = s = ﬁ; sing = (M) sin 6
2

nucleus 2 2B
Laboratory angle of the tan 6 = M

scattered projectile M; + M;cos6,
Center-of-mass angle of the O.=m1m—2¢0=m— ¢

scattered projectile When M| < M, = u <1, 6, is defined for
all @ <mand 6. = 6 + sin~! (usin 6)

When My > M, = u> 1, 6, is double
valued and the laboratory scattering angle is
limited to the range 6 > sin~! (1/u). In this
case, 0. = 6 + sin"! (usin6),or 6. =7 + 6
— sin~! (usin 6)

After Weller (1995).

3.4 Classical two-particle scattering

The collision and scattering problem defined by Fig. 3.2 will now be
restated in terms of center-of-mass (CM) coordinates. The motivation
for this transformation will be obvious when we discuss scattering in a
central force field later in this chapter. Through the use of CM
coordinates it will be shown that no matter how complex the force is
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between the two particles, so long as it acts only along the line joining
them (no transverse forces), the relative motion of the two particles
can be reduced to that of a single particle moving in an interatomic
potential centered at the origin of the center-of-mass coordinates. By
introducing the CM system, the mutual interaction of the two colliding
particles can be described by a force field, V(r), which depends only
on the absolute value of the interatomic separation, r. The motion of
both particles is given by one equation of motion. This equation has r
as the independent variable and describes a particle moving in the
central force field V' (r).

The CM coordinates for a two-particle system are defined in a
zero-momentum reference frame. In the frame, the total force on two
particles that interact only with each other is zero. Since we can define
the total force of two interacting particles as

R (3.8)
dt
where Fy = total force, F; and F, are the individual forces on particles
1 and 2, respectively, and py is the total linear momentum of the
two-particle system. For Fr =0, dpy =0, indicating that the total
momentum is unchanged or conserved during the interaction process.
One of the consequences associated with observing elastic collisions
in the CM coordinates is that the individual particle kinetic energies
are unchanged by the collision process. Thus, the CM velocities of the
two colliding particles are the same before and after the collision
process. In addition, the CM scattering angle of particle 1 will equal
the scattering angle of particle 2. Finally, all scattering angles in the
CM system are allowed, unlike the scattering angles in the laboratory
reference frame where the allowed scattering angles depend on the
ratio M{/M,.
For CM coordinates, Fig. 3.3(b), we define the system velocity, v,
such that in this coordinate system there is no net momentum change,

so that

Myvy = (My + My)v, (3.9)
We also define in CM coordinates a reduced mass, M, given by
sk ghlans by (3.10)
M. M, M,
or
MM
Mo e (3.11)
M+ M,
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(a) Lab

(b) CM Vion =Vo— Vg

Vatom = Ve

Fig. 3.3. Elastic collision diagrams between two unequal masses as seen in the
(a) laboratory reference frame and (b) CM reference frame.

From Egs. (3.9) and (3.11) we can represent the CM velocity in terms
of reduced mass as
V.=V M. 3.12
c 0 M2 ( x )
From the velocity vector diagram in Fig. 3.3 and Eq. (3.12), the ion
and target atom velocities in CM coordinates are

M
Vion = Vo — Ve = Vg— (3.13)
1
M
Vatom = V¢ = V| —= 3.4
", (3.14)

Eq. (3.14) shows that the target atom, which has zero velocity before
the collision in the laboratory reference frame, has the system velocity,
V., before and after the collision in the CM reference frame.

Egs. (3.13) and (3.14) show the advantage of the CM reference
frame. The system velocity, v,, and the atom and ion velocities, YVaioia
and Vi, remain constant and are independent of the final scattering
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angle between the two particles (Fig. 3.3(b)). Thus, regardless of
whether the collision is elastic or inelastic, the total momentum is
unchanged in a collision. In addition, from Egs. (3.13) and (3.14), we
see that the ratio of the ion to atom velocities is inversely proportional
to the ratio of their masses:

Vion _Vo—Vc=M2=l (315)

Vatom Ve M il u
Another advantage to the CM reference frame is that the CM total
energy, E., is equal to the CM initial kinetic energy:

E. = iM v} (3.16a)
MM M
ROy o 2k (3.16b)
2M,+ M, M, + M,

where M vi/2 = E,.

In our discussion of ion—solid interactions, we will, for the sake of
simplicity, carry out many calculations in the center-of-mass system,
but we will want to relate the results to experiments in the laboratory.
Thus, it is useful to know some of the conversions between variables in
these systems.

The conversion of scattering angles from the laboratory system to
the CM system is determined from the scattering diagrams given in
Fig. 3.3. Examining the target atom (M) trajectory portion of Fig.
3.3(a), we see that the final target velocity in the laboratory, v,, is
related to the CM atom velocity, Vaom = Ve, Dy the difference vector,
v.. Since the triangle formed by these velocity vectors is isosceles, we
have

¢ =2¢ (3.17)
From the CM diagram, Fig. 3.3, we have 6. + ¢. = 7, which allows us
to rewrite Eq. (3.17) in the form
b 7
2
which relates the target atom scattering angle in the laboratory to the
CM ion scattering angle.

Another important relationship that will be needed in future discus-
sions on ion stopping and radiation damage is the one between the
energy transferred to the target atom as a function of the target atom
scattering angle 6. or 6. Again, from the velocity vector diagram in
Fig. 3.3(a), and the law of cosines, we have

03 =02+ [vf — 2v%cos (m = ¢o)] (3.19)

(3.18)




48 Dynamics of binary elastic collisions

Using Egs. (3.17) and (3.18) to recast ¢ in terms of 6., we obtain
v% =202 (1 - cos 6,) (3.20)
which relates the target atom recoil velocity in the laboratory to the

CM velocity and the CM ion scattering angle. Eq. (3.20) can be
simplified by using Eqs. (3.14) and (3.17) to obtain

vy = 200% cos ¢ (3:21)
M,
which gives the laboratory recoil velocity, v,, as a function of the initial
ion velocity, vy, and the laboratory recoil angle. This equation can now
be used to obtain the energy transferred to the target atom by the
incident ion through the kinetic energy velocity relationship,

E, = iMyv3 (3.22)
In many books, the energy transferred to the target atom, Ej, is
referred to as 7. Substituting Eq. (3.21) into Eq. (3.22) gives

2
T=E,= &(——”"MC s 4’) (3.23)
2 M,

The transferred energy, T, can be related to the ion scattering angle,
6., by Eq. (3.18) to yield

4 M 6

i i(quc sin ﬁ) i o (3.24)
M, 2 M, 2

From the description of reduced mass, Eq. (3.11), we rewrite Eq.

(3.24) to obtain

T=E _ﬂll—Mz—sinzﬁ (3.25)

0
(M; + M,)? 2
or

¢ o 0 G sinz% (3.26)

where Ty is the maximum energy transferable in a head-on collision,
6. = 0, and is given by

4M\M
j VRl o S U (3.27)

Yy + Moy
where y = 4M;M,/(M; + M,)*. Examining Eq. (3.27) we see that, for
the equal mass case, all the energy may be transferred, whereas, for a
larger mismatch in particle masses, only a fraction of the energy may
be transferred in an elastic collision.
These final relationships give the energy loss by the ion through
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Table 3.3. Energy transfer and angular range of 0,

o8 2

Heavy target M; < M, 0< 6| < —=—"(1—cosb,)
E() m
T ] SN
Equal masses M; = M, 0< 6| <— — =sin® 6,
2 Ey
M
Light target M; > M, 0 < |6 < tan~!(M,/M;) < g P siigh
2. By My

After Johnson (1982).

elastic collisions with target atoms; they will be needed in the develop-
ment of the concepts of energy-loss cross-section and nuclear stopping
which will be discussed in Chapters 4 and 5, respectively.

As an example, to determine the energy transferred in a binary
collision where a 100 keV boron (M;=10) ion incident on Si
(M, = 28) and scattered through a laboratory angle 6 = 45°, one first
determines the corresponding CM angle 6. from the expression given
in Table 3.2, 6, = 6 + sin"'(usin 8), which gives 6, = 60°. Next we
calculate the ratio Ty/E from Eq. (3.25) which gives Ty = 0.78E,.
Finally, for Eq = 100 keV, T = 19.5 keV from Eq. (3.26).

Additional relationships between the CM and the laboratory refer-
ence frames are summarized in Table 3.2. A summary of the angular
range of 6, and the limitation on transferred energy as a function of
M/M, are presented in Table 3.3. The limitations on laboratory
scattering angles are discussed in detail in Appendix E.

3.5 Motion under a central force

In our discussions of ion-solid interactions, we restrict ourselves to
central forces, where the potential V is a function of r only, V = V(r),
so that the force is always along . We need consider only the problem
of a single particle of mass M., moving about a fixed center of force,
which will be taken as the origin of the coordinate system. Since
potential energy involves only the radial distance, the problem has
spherical symmetry, indicating that any rotation about a fixed axis can
have no effect on the solution; that is, if either particle is located at the
origin, the force on the other is given by a central force F(r), which
only depends on the separation distance r.
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In the problem examined in this section we will assume that, in the
laboratory system, one of the particles is practically at rest at the
origin, O, while the other one moves with velocity v, a good approxi-
mation when the stationary particle is much heavier than the moving
particle.

3.5.1 Conservation of angular momentum

Consider a particle located in space at point P, a distance r away from
a central force originating at point O (Fig. 3.4). If the particle of mass
M at P is acted on by a force F, we have

F=Ma=nm3"
dt
Forming the vector cross product of the position vector r with both

sides of this equation gives
rXxF=rX M% (3.28)
t

The left-hand side of this equation, r X F, is the torque 7 due to F

Mv (a)

Fig. 3.4. (a) Vector relationship of position, linear momentum, and orbital
momentum. (b) Analysis of the velocity into radial and transverse components.
(After French, 1971.)
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about O. The angular momentum, /, of the particle with respect to the
origin is given by
Il=rXMv=rXp (3.29)
The angular momentum [ is a vector perpendicular to the plane
defined by r and v in Fig. 3.4(a), and bears the same relation to linear
momentum, p, as torque, 7, does to force, F.
The time rate of change of / is given by

d—l=d—erv+r><M—dl

dt dz dt
=v><Mv+r><Mﬂ
dt

From Fig. 3.4, we see that the value of v X Mv is zero because it is the
cross product of two parallel vectors. The second term is simply the
torque due to the force about O, Eq. (3.28), leading to the expression

ierxlor (3.30)

dt
Eq. (3.30) relates the torque to the time rate of change of the orbital
angular momentum of the particle about the origin O. For F = F(r), a
central force, which is directed radially away or toward O, F is parallel

tor and T = F X r = 0. Thus, for a central force we have

d/
—=0 3.3
i (3.31)
which, when applied to Eq. (3.29), gives
[ =r X p = constant (3:32)

Eq. (3.32) is the statement of the conservation of orbital angular
momentum for the motion of mass M under a central force.

If we examine the situation described by Fig. 3.4(a) in the plane of
motion, which is defined by vectors r and v, the problem can be
presented in polar coordinates, and the velocity can be broken down
into its radial, v,, and transverse, vg coordinates, Fig. 3.4(b). For the
polar representation in Fig. 3.4(b), the vector / points out of the page,
and its magnitude is given by

e e Mrz-‘;ﬁ (3.33)

t
where the product rvg = r>d6@/dt is constant for a central force. For
ion-solid interactions and a CM coordinate system, M in Eq. (3.33) is

replaced by M.
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3.5.2 Energy conservation in a central force

For conservative central forces and a defined interaction potential,
V(r), we can write a statement for the total mechanical energy for a
particle of mass M, a distance r away from a central force, F, as
defined in Fig. 3.4(b), as

= A;—[vf + 03] + V(r) (3.34)
where v, and vy are the radial and transverse velocities, respectively.
The first term on the right-hand side of Eq. (3.34) represents the
kinetic energy in polar coordinates.

In addition to the total energy equation given above, we also have
the condition of conservation of angular momentum given in Eq.
(3.33)

Il = Mrug
The quantities E and [/ are the constants of motion, while V(r) is the
potential energy for a particle of mass M in a central field. Egs. (3.33)
and (3.34) allow us to reduce the three-dimensional problem described
in Fig. 3.4(a) to a one-dimensional problem, Fig. 3.4(b), an advantage
of central field formulation.

Using Eq. (3.33) we rewrite Eq. (3.34) in the form
Mv? & 2

Mr?

E=E®r) = + V(r) (3.35)

All terms in Eq. (3.35) are a function of r only: the first term is the
kinetic energy for the radial component, the term [?/2Mr? is referred
to as the centrifugal energy, and V(r) is the interatomic potential
energy. The centrifugal energy is the portion of the kinetic energy term
which is due to the particle’s motion transverse to the direction of the
radius vector. It is because the centrifugal energy can be described as a
function of radial position r alone that we can treat the radial motion
of a particle as a one-dimensional problem in r. Eq. 3.35 is now simply
a function of r only.

3.5.3 Angular orbital momentum and the impact parameter

Consider an interaction potential energy, V/(r), that tends to zero as r
approaches infinity. This situation corresponds to the condition that a
moving particle has positive kinetic energy at infinity. If V(r) is
everywhere positive, but decreasing monotonically with r, the poten-
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tial is repulsive, and the radial motion of this particle in the field V (r)
will have no bounds or limits in its maximum value of r. However,
there is a minimum in r, the distance of closest approach, ru;,, that
depends on the particle’s total energy and the nature of the interaction
potential.

In Fig. 3.5(a), the energy curves for attractive and repulsive poten-
tial energy, differing only in sign, are presented along with an arbitrar-
ily defined centrifugal energy curve. In Fig. 3.5(b), the effective

potential energy curves

2
(3.36)

Vi(r) = V(r) + —
; 2Mr?
are shown for the two cases. Fig. 3.6 gives a schematic representation
of how the effective potential energy affects the trajectories of a
particle moving with an energy E = Mv?/2. The distance of closest
approach is determined by the value of r that satisfies the condition
E =V'(r).

At large distances away from the center of force, the magnitudes of
V(r) and I?/2Mr? will be negligible; see Fig. 3.6. Under such condi-
tions, a particle with energy E travels in a straight line with a speed
vo = 2E/M)"2. The particle’s direction of motion is offset from a
parallel line through the center of force (target atom) by a distance b
that is directly related to the centrifugal energy and the angular orbital

Energy Energy

Fig. 3.5. (a) Centrifugal potential-energy curve (dashed) and two potential-
energy curves, differing only in sign, that might arise from electrical inter-
actions of like and unlike charges. (b) Effective potential-energy curves corre-
sponding to the two cases shown in (a), indicating different distances of closest
approach for a given positive total energy. (After French, 1971.)
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Fig. 3.6. (a) Plan view of trajectory of a particle moving around a center of
attraction. The angular momentum is defined by the impact parameter, b. (b)
Corresponding trajectory with the same impact parameter, but with a repulsive
center of force. (After French, 1971.)

momentum. From the law of conservation of angular momentum,
I = Mrpinve (3.37a)
approaches
I = Muvgb (3.37b)
for r approaching infinity. Since angular momentum is conserved in
central force scattering, / is defined by either form in Eq. (3.37). The
distance b is called the impact parameter and is very useful in charac-
terizing a particle which approaches a center of force.
From Fig. 3.5, the distance of closest approach, rp;,, is shown to be
determined from the condition E = V'(r), which translates to
12
2Mrl;,
Using Eq. (3.37b) to define the orbital angular momentum, we rewrite
Eq. (3.38) in the form

E = V(rm) + (3.38)

4 2
o=1—M—2— (3.39)
E ¥ min

where E = E. in the CM system. Eq. (3.38) shows that r,;, will
depend on the energy of the ion and the form of the interatomic
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potential. Knowledge of V(r) allows one to find ry;, by applying the
quadratic equation to Eq. (3.39).

3.6 The classical scattering integral

In this section, we will derive an expression for the CM scattering
angle 6.. We will see that 6, will depend on the interatomic potential
V(r), the ion energy E, and the impact parameter b.

The discussions in Sections 3.3-3.4 of this chapter have reviewed the
elastic scattering process for the two-particle systems by only consider-
ing the asymptotic values of momentum and energy at distances far
from the collision site. However, to proceed with the development of
ion-solid interactions, we must know the probability for each scatter-
ing angle, which will allow us to determine the energy transferred
during scattering. The probability for a given scattering angle will lead
to the concept of the energy transfer cross-section in Chapter 4. The
only way to determine the probability of each scattering angle is by
evaluating the details of the scattering trajectory, which requires us to
understand the motion of the particles under a central force.

As we showed in Section 3.5, the problem of defining the scattering
trajectory of a moving particle in a central force field is greatly
simplified by assuming that the force between the two particles acts
only along the line joining them, and that there are no transverse
forces. The use of CM coordinates then reduces any two-body problem

to a one-body problem, namely the interaction of a particle with mass

M. and velocity v, with a static potential field, V(r), centered at the
origin of the CM coordinates. This simplification occurs because in the
CM system the total linear momentum of the particles is always zero,
the paths of the two particles are symmetric (as shown in Fig. 3.3), and
the evaluation of the path of one particle (scattering angle) directly
gives the path of the other particle. The conversion from CM scattering
angles to laboratory angles is then achieved with the equations sum-
marized in Table 3.2.

In Fig. 3.7 we represent the scattering process between an atom
moving with initial velocity vy and energy E, and a stationary target
atom (initially shown in Figs. 3.2 and 3.3) with the details of the
scattering trajectories displayed for both the laboratory and the CM
reference frames. The distance b in the figure is the impact parameter,
as discussed in Section 3.5.3, and defines the length of the perpendicu-
lar between the initial position of the target atom and the incident
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(a) Laboratory

(b) Center of Mass

[ T —]

Fig. 3.7. The collision trajectories at an impact parameter b for an elastic
collision between two unequal masses, as seen in the (a) laboratory reference
frame and (b) CM reference frame.

trajectory of the ion. This parameter will be shown to be an important
quantity in the scattering process and will define the hardness of the
collision. The dashed lines in Fig. 3.7 represent the asymptotes of the
ion and target atom trajectories. The parameter ry,, is the distance of
closest approach during the scattering event.
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Since we are dealing with two particles only and no transverse
forces, the problem is two-dimensional in the plane defined by the
initial velocity vector for the ion and the initial position of the target
atom. Since we are dealing with conservative central forces, defined by
an ion—atom interaction potential V' (r), conservation of energy in the
center-of-mass system will be

E. = iM (? + r*02) + V(r) (3.40)

where the first term is the system kinetic energy. The variable r is
defined in Fig. 3.7 as

(g | 7+ ry (341)
with the CM distances r; and r, defined by
r= Lr (3.42a)
M, + M,
M
e S (3.42b)
M, + M,

The variable r is the CM separation distance between M; and M,,
and ry and r, represent the distance from the center of mass to the ion
(M,) and the target atom (M), respectively. The value @, is the time
rate of change in the scattering angle, d®./d¢, and @, is defined as the
angle between line r; + r, and the line perpendicular to ry, and is
different from the CM scattering angle 6. The energy E. is the CM.
energy, defined in Eq. (3.16), and M, is the CM mass, defined in Eq.
{3.11).

In addition to the conservation of energy, we have the law of
conservation of angular momentum, Eq. (3.33), which, during the
scattering process in the CM system, is given by

= M.r?0, (3.43)
where [/ is the constant angular momentum. For large values of r, the
angular momentum is simply related to the impact parameter and has
the magnitude M .vob (Eq. (3.37)). Since angular momentum is con-
served we have

[ = M@, = M.yb (3.44)
from which we obtain
Uob

r2

With Eqs. (3.40), (3.44), and (3.45), we can now solve for @, as a

0. =

(3.45)
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function of any central force potential, V(r). From these equations we
obtain the radial equation of motion
2\1/2
;o 00(1 sl ol gl (3) ) j (3.46)
B r
Using this result and noting that # = (dr/d¢) and that @, = (d@®./dr),
we obtain

de. dr _ de. _ b (3.47)

dt dr dr r2[1 s (b )2]1/2

c r

The CM scattering angle 6, is found by integrating . on the left-hand
side of Eq. (3.47) over the first half of the orbit, from 6./2 to 7/2,
which corresponds to the integration limits on the right-hand side of
T'min to infinity:

/2 ©
f e, = il i (3.48)
ec/z T'min
-0
E. r
£ bdr
= 6) = T (3.49)
A-20-(j
B r
which reduces to
0.=m—2b gr (3.50)

o MO
EX r

This final equation is called the classical scattering integral and gives
the angular trajectory information for two-body central force scatter-
ing. Eq. (3.50) allows us to evaluate the scattering angle 6, in terms of
energy E., the interatomic potential V(r), and the impact parameter
b. The scattering angle of an ion with energy E, moving in a force field
defined by V(r), will vary with the impact parameter b. The signifi-
cance of this will become clear when we discuss the differential
scattering cross-section in Chapter 4, where Eq. (3.50) is solved
explicitly for a Coulomb potential. In general, potentials are more
complex and numerical solutions are required. Transformations from
the CM angle 6, to the laboratory angles 6 and ¢ can be made with the
help of Table 3.2.

A comparison of Eqgs. (3.50) and (3.39) shows that the distance of
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closest approach, rp,, can be found by setting the expression under
the radical in Eq. (3.50) to zero. Since the radical in Eq. (3.50) is zero
at r = rpn, Eq. (3.50) has a singularity at r = ry;,, which must be
avoided during the integration processes. This can be accomplished by
carrying out the following substitution:

TS (3.51)

b
With this change of variables, the integration limits are transformed to

1/ = 0 and 1/ry;,, which transforms Eq. (3.50) to

e
6, =m—2b f i - (3.52)
0
[1 LT
E.
This final form of the scattering integral removes the singularity as u
tends to zero.

3.7 Distance of closest approach

The distance of closest approach was defined by Eq. (3.39) and can be
rewritten as

V(rmin) AN EIE M2
1= bl M,
where Eq. (3.16) was used to transform the CM energy E. to the
laboratory energy E,. For a Coulomb potential, Eq. (2.4), and a

head-on collision, b = 0, we can rewrite Eq. (3.53) as

M, + M, 22,0 = 21 Zq8*
250 c

For a head-on collision, rp;, =d., where d. is called the collision

diameter. For a given interatomic potential and ion energy, the colli-

sion diameter gives the lower limit to 7.

As an example, for 1 MeV He (Z;=2) ions incident on Si
(Z,=14), the CM energy E. = M,Ey/(M, + M,) = 875 keV and the
distance of closest approach, the collision diameter = Z,Z,e?/E, =
4.6 X 107° nm, a value much smaller than arg. It is informative to
write d. relative to the screening distance atg, where the parameter
ayy/d, is referred to as &, the reduced energy, given by

Eo (3.53)

(3.54)

d.= (rmin)b=0 =

arp _ apEc. _ E argM,
d. Z]Z:_)L’z lezez M, + M,

li

€ (3.55)
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Examining Eq. (3.55) we see that € is a dimensionless energy unit.
Physically, € gives a measure of how energetic the collision is and how
close the ion gets to the nucleus of the target atom. For example, the
value of the Thomas—Fermi screening distance arg for He on Si is

_ 0.885 x 0.053
s e
The reduced energy for 1 MeV He ions is
LR
d: 4.6 x 107° nm
This large value of ¢ is consistent with the very small value of the

collision diameter.
For calculation purposes, Eq. (3.55) can be simplified and rewritten

as

a =1.5x%10"%nm

=34 x 103

E =

0.03255 E(eV) M,
2 - - (3.56)
Z,Z,(Z277 + 2T My + M,
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Problems

Derive the expression for the laboratory energy of the recoil

nucleus as written in Table 3.2.

Write a simple expression for E;/E, and E,/E in backscatter-

ing (6 = 0) and right-angle scattering (6 = 90°) for M, = M,,

M, > M,, and M; < M,. What are the allowed solutions?

What is the maximum energy transferred to electrons, silicon

atoms, and copper atoms by incident 100 keV electrons, silicon

ions, and copper ions?

In the laboratory system, we have arsenic ions at 100 keV

scattered from silicon atoms at 6 = 10°.

(a) In the laboratory system, what is vy, v,, ¢, and E,?

(b) In the center-of-mass system, what is v;,, 6., and ¢.?

Solve the scattering integral, Eq. (3.52), for the unscreened

Coulomb potential V(r) = Z, Z,e?/r.

(a) :" Derive a general expression for the distance of closest
approach, rp,, for the unscreened potential.

(b) What is the value of ry;, for 2 MeV “He incident on gold
for a head-on collision, b = 0, and for b = 0.5a; and 5a; ,
where q; is defined in Eq. (2.47).

Prove that / = Mrvg approaches ! = Mv,b for r approaching

infinity (Eq. (3.37)).

Using Eq. (3.39) and assuming a pure Coulomb potential,

calculate the value of rp;, for a 100 keV boron atom (Z; = 5)

on silicon (Z, = 14) for an impact parameter b = 1 nm. What

is the significance of your answer?
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Cross-section

4.1 Introduction

In Chapters 2 and 3 we developed concepts essential to our under-
standing of ion-solid interactions. In Chapter 3 we derived equations
describing the kinematics of binary elastic collisions. These equations
enable us to calculate the amount of energy transferred to a target
atom in a collision when the scattering angle of the projectile or the
target atom is known. Conversely, we could calculate the scattering
angles if the amount of energy loss in the collision were known. At the
end of Chapter 3 we developed an expression for the center-of-mass
scattering angle, 6., which is a function of the ion energy, the impact
parameter b, and the interatomic potential energy V(r). The details of
the interatomic potential energy were discussed in Chapter 2.

In Chapter 4 we will examine the probability of ion—solid scattering
events. During ion irradiation and ion implantation experiments, many
ions or energetic particles interact with many target nuclei. Due to the
large number of interactions, the questions of how much energy will be
transferred in a collision or what the scattering angle will be must be
answered using statistics and probability. The differential cross-section
is the fundamental parameter that we will develop. It gives a measure
of either the probability of transferring energy 7 in the range between
T and T + dT to a target atom or of the probability of scattering a
projectile into some angle between 6. and 6, + d6.. The differential
cross-section has units of area, typically centimeters squared. The
differential cross-section integrated over all angles is the total cross-
section, often referred to simply as the cross-section.

The differential cross-section will become an important parameter in
describing ion ranges in solids and radiation damage, both of which
will be discussed later in this book. The differential cross-section
depends strongly on the form of the interatomic potential.
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4.2 Angular differential scattering cross-section

In ion-solid interactions, it is customary to describe the number of
particles scattered through different angles 6. in terms of a quantity
called the angular differential scattering cross-section. Imagine the
experiment depicted in Fig. 4.1, where a beam of ions is incident on a
thin foil and is scattered into a detector of area Aa at a polar angle
between 6. and 6. + d6.. Each of the ions in the incident beam has a
different impact parameter b (as described in Chapter 3) and will be
scattered through a different angle. We define the differential dny as
the number of ions scattered into the detector of area Aa, between
angles 6. and 6, + d6,, per unit time. We also define I, to be the flux
of incident particles, equal to the number of ions incident on the
sample per unit time, per unit area (i.e., ions per second per centi-
meter squared). The solid angle of the detector, AQ, is related to the
detector area, Aa, and its distance away from the sample, R, and is
given by

Aa _ (RA6)(Rsin 6.Ag)
R? R?

We now define do(6,), the differential scattering cross-section, to be

AQ =

= AOAgsin 6, 4.1

z
4 Detector
T
[
|
|
|

Rsin 6

lon Beam

>
l J
o
N

Fig. 4.1. Experiment for measuring angular differential cross-section. The
detector area is Aa = (RAO.)(Rsin 6, Ap). By moving the detector to all
angular positions for a fixed R, all the scattered particles can be counted, and
the detector will have covered an area 47R?, or a total solid angle of 47.
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given by
do(6.) _ 1 dny
dQ Iy dQ2
where for Aa— 0 we have AQ— dQ. The term do(6.)/dQ is the
differential scattering cross-section per unit solid angle, and dny/dQ is
the number of particles scattered into the angular regime between 6,
and 6, + dO, per unit solid angle. Since the units of Q (steradian) are
dimensionless, the differential scattering cross-section has units of
area.

The cross-section is simply the effective target area presented by
each scattering center (target nucleus) to the incident beam. At a more
microscopic level, the scattering cross-section can be shown to be
dependent on b, the impact parameter. In Fig. 4.2 we present the
collision process in which the incident particle is scattered by a target
nucleus through an angle 6.. The projectile moves in a nearly straight
line until it gets fairly close to the target nucleus, at which point it is
deflected through an angle 6.. After being deflected, the trajectory of
the particle is again nearly a straight line. If there had been no
interaction force between the projectile and the target nucleus, the
projectile would have maintained a straight trajectory and passed the
target nucleus at a distance b.

On examining Fig. 4.2, we see that all incident particles with impact
parameter b are headed in a direction to strike the rim of the circle
drawn around the target nucleus and will be deflected by an angle 6.
The area of this circle is 7b?, and any particle with a trajectory that
strikes anywhere within this area will be deflected by an angle greater
than 6.. The target area defined by the impact parameter is called the

(4.2)

b
i . Central Force
Sl e s e ® 1 (Target Atom)

Fig. 4.2. Scattering of a particle that approaches a nucleus with an impact
parameter b. The total cross-section is 0 = 7b?.
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total cross-section o(6,):

o(6,) = nb? 4.3)
For projectiles moving with small values of b, the cross-section defined
by Eq. (4.3) will be small, but, due to the interaction forces, the
scattering angle will be large. Thus, b is proportional to o(6,), while I,
and o(6,) are inversely related to 6,. From this discussion, we see that
b= b(6,).

In addition to the total cross-section, there is the differential cross-
section, do(6.), and its relationship to b. As shown in Fig. 4.3,
particles incident with impact parameters between b and b + db will
be scattered through angles between 6, and 6, + d6.. The differential
cross-section for this process is found by taking the differential of Eq.
(4.3) wit/h”/respect to the impact parameter:

\ do(6,) = d(zb?) = 2mb db (4.4)
From the description given in Eq. (4.4) and the schematic presented in
Fig. 4.3, the differential cross-section of each target nucleus is pre-
sented as a ring of radius b, a circumference 27b, and width db. Any
incident particles with an impact parameter within db will be scattered
into angles between 6, and 6, + d6,.

From the examples presented in Figs. 4.2 and 4.3, we see that there
is a unique connection between the value of b and the scattering angle
.. To find the dependence of do(6.) on the scattering angle, we
rewrite Eq. (4.4) in the form

do(6,) = 2mb(8,)| 32L%)

de, (4.5)

c

| | Central Force
(Target Atom)

Fig. 4.3. Nuclear target area for the differential cross-section do = 27b db.
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We use the absolute value of db(6.)/df. to maintain do(6.) as a
positive value; 6, increases as b decreases, indicating that db(6.)/de. is
negative.

To determine an expression for the differential scattering cross-
section per unit solid angle (Eq. 4.1), we note that scattering experi-
ments are performed by observing the number of incident particles that
are scattered into a solid angle located at 6.. Measurements give
information in units of the number of scattering particles per element

of solid angle. A schematic of this process is presented in Fig. 4.4. The / /

annular region represents the solid angle dQ2 subtended between the(,/
scattering angles 6. and 6.+ d6.. The entire area of the sphere|
of radius R is 47R?, and the total solid angle of the sphere is 4.
The shaded area is a ring of radius R sin 6., circumference 27 R sin 6,
and width Rd6.. The area of the shaded ring is therefore
(27)(R sin 8.)(Rd6,) = 2mR*sin 6.d6.. By definition of solid angle,
area/R?, we obtain

dQ = 27sin 6. d6, (4.6)

The result is equivalent to Eq. (4.1), where Ag has been integrated
over 2m. The differential scattering cross-section for scattering into a
solid angle dQ (Eq. (4.1)) is obtained by combining Egs. (4.5) and

Central Force
(Target Atom)

Fig. 4.4. The solid angle dQ subtended at the scattering angle 6. by the
incremental angle df,. By definition, dQ/4x is the shaded area divided by the
entire area of spherical surface; the shaded area is equal to 2m(R sin 6,)(R d6,).
Then dQ/4m = 27 R? sin 6, d6,./4n2; therefore dQ = 27 sin 0, d6..
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(4.6) to produce
do(6,) i L _(&
dQ sin 6, |d6,
Eqgs. (4.5) and (4.7) give the differential scattering cross-section in
the center of mass. The equivalent expressions in the laboratory
reference frame can be obtained for the scattered projectile and
scattered target nucleus by using the angular relationships presented in
Table 3.2.
Integration of Eq. (4.7) provides a relationship between the differen-
tial scattering cross-section and the impact parameter:

4.7)

4 7do(6,)
b(6 db=f—° sin 6, d6
fo(c) g Sin.de.

which results in the expression
Tdal6.));]
b2=2f — " 5in 9, d6 4.8
0 e db. (4.8)
where the dependence of scattering angles on the impact parameter

has been omitted for brevity. By linking Eq. (4.8) with the expression
for 6. (Eq. (3.50)), an effective means of passing between V(r) and
do(6,) can be established.

As an example of the use of the angular differential cross-section, we
consider the condition where the interaction between colliding particles
I8 purely Coulombic; for this situation the projectile and target nucleus
ire treated as pure nuclei, with the projectile described by mass and
fitomic number M; and Z,, and the target nucleus described by mass
ind atomic number M, and Z,. The interatomic potential for Cou-
lomb interaction is given by

Z 1 7 2€ -

V(r) =
r

Where r is the distance of separation between the two nuclei. To put
Eq. (4.9) into the same form as Eq. (3.52), we make the following

substitutions:
LY

(4.9)

4

u= (4.10a)
4
and
a=2Z,7Z;e* (4.10b)
leading to
V(u) = au (4.11)
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With the interatomic potential written in this way, the angular scatter-
ing integral (Eq. (3.52)) becomes

-l/’nuu d
0. = - 3] e (4.12)

0 1 o At
A e s u2]
rbz E.b?

Eq. (4.12) can be integrated exactly by noting the following integral

solution:

f dx L el Sin_l(c+2dx)
(a + cx + dxz)l/2 (—d)l/2 (Q)l/z

where ¢ = ¢* = 4ad. For Eq. (4.12), these variables are equal to

i -«
a=-—, c= H = -1
b? E.b?
b? 4E:b?

and

c+2dx=—(2u+ &, )
. h*

After carrying out these substitutions, the solution to Eq. (4.12) is
now given by

_(bu i o ) 1/rn:u'n
2E.b
0, = m— 2| sin™! 2 e (4.13)
(1 L )
4EZb o

To complete the integration, a value for r;, must first be obtained.
From the definition of rp;, given in Eq. (3.39), and using the change in
variables defined by Eqs. (4.10) and (4.11), we have

KUmin

bruls + -1=0 (4.14)

(o}
where Upin = 1/rmin. Eq. (4.14) is solved for up;, using the quadratic
equation, and has the solution

i 2 12
umm=i=l( i i(( o ) +1) ) (4.15)
b\2bE, = \\2bE,

"min
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Applying Eq. (4.15) to the upper limit in Eq. (4.13) gives

o
2E.b

( ( C ) )

T o N
- sin—l( [1 - ( ) ] ) (4.17)
2 s 2E.b 2E.b

We now use Eq. (4.17) to express b in terms of 6.. Eq. (4.17) can be
rewritten as

(4.16)

O.=7m—2 + 7 _ sin~!
2

o
sin(ec_ni£)=isin(—03)= v i
|1+ (z25)]
2E.b

The trigonometric representation of this equation is presented in Fig.
4.5, which allows us to construct the following relationship between the
Impact parameter b and the scattering angle 6,:

e cot(&) = LM (4.18)
2E: 2 2E,. sin(6./2)

We will now use Eq. (4.18) together with Eq. (4.7), do(6.)/dQ
= b/sin 6.|db/d6|, to obtain the differential cross-section for scattering

2Ecb

Ilg. 4.5. Trigonometric relation between the center-of-mass scattering angle,
fl,, and the impact parameter, b, for the Coulomb potential.

| &
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into a solid angle dQ for the Coulomb potenti i i
. t v .
(4.18) with respect to 0. potential. Differentiating Eq.

b & deot(8/2) a d(

do.; | 2B de, 2E; d6\ 1 - cos(6,/2)
i 44 (4.19a)
4E.sin’(6,/2)
and multiplying by b
p3b _ 1( o )2 cot (6,/2)
3 TE SOEF U (4.19b)
leads to : ol At
do(6) _ b |db I o 1( @ )2 cot (6,/2)
T8 FTET
. sin 6 [d6.| 2\2E.) sin 6. sin’ (6,/2)
dor(Bc)z( a )2 1
do 4E./ sin*(6,/2) i

where the geometri i i = 2si
b geometrical relation sin 6, = 2sin (6/2) cos (6./2) has been
4 . GhdEg

i 1For i MeV “He ions (Z1 =2) incident on silicon (Z, = 14), the
alue of E, = 8705 keV ar.ld @ =40.3 eVnm. For a 180° backscattering

event, 0?01/02 = 20 and sin*(6./2) =1. Then do(6,)/dQ = (a/E,)? =

1.3 X107 nm?, or a value of 1.3 x 102 cm?, ;
The angular differential cross-section is obtained from the relation-

ship betwc?en dQ and d#6, defined in Egs. (4.6), dQ = 27sin 6. dg and

(4.20). Using some differential algebra we have H il

do(6,) L do(()c)d_g W 2”( o )2 cos (6./2)
dé, dQ de, 2E.) sin’(6,/2)

: Eqgs. (4.20) 'and (4.21) are the Coulomb angular differential scatter-
ing cross‘-sectlons, otherwise known as the Rutherford differential
tcross-.sectzons. Fror.n Eqgs. (4.20) and (4.21) we see from the sin (6./2)
err; in the denomln.atc?r that both do(6.)/d6, and do(6,)/dQ increcase
?s . decreases. This indicates that the Coulomb scattering process
avors small-angle scattering, or, in other words, the largest cross-
sections are for scattering events of small angles.
- tI?or fforward scattering with 6, = 2, sin* (6,/2) = 1 x 107 indicating a
10 Of seven orders of magnitude betwee f tteri it
and backscattering at 180°. e o s

(4.21)

"y
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4.3 Energy-transfer differential scattering cross-section

In a fashion similar to the development of the angular differential
scattering cross-section, we will derive an expression for the transfer-
ring of energy during a scattering event. Consider Fig. 4.6, where a
flux of energetic incident particles traverses a thin target, of thickness
dx and unit area, containing a total of N target atoms per unit volume.
Each target nucleus presents an effective scattering area, o, to this
projectile, similar to the presentation in Fig. 4.2. The thin target in Fig.
4.6 contains a total of Ndx target nuclei per unit area. The product
oN dx represents the total fraction of the target surface area which
acts as an effective scattering center to the incident energetic particles.

From the above analysis of Fig. 4.6, we can define the probability of
a projectile with energy E undergoing a scattering event or a collision
with a target nucleus while traversing a thickness dx as

P(E) = No(E)dx

Eq. (4.22) defines the total collision cross-section, o(E), between an
energetic particle of energy E and the target atoms. The total cross-
section gives a measure of the probability for any type of collision to
occur where energy transfers are possible, for energies up to and
including the maximum value Ty =4M;M,E/(M,+ M,)* (Eq.
18.27)).

In addition to the total cross-section, we also wish to consider the
more restrictive types of interactions that can occur between particles
with energy E and target nuclei. Consider the condition where we wish
to know the probability that a projectile with energy E will transfer an
amount of energy between 7 and T + dT to a target atom. Such a

(4.22)

Unit Area

Fig. 4.6. Schematic view of a portion of a scattering foil, with each target atom
presenting an effective scattering area o.
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probability function defines the differential energy-transfer cross-
section do(E)/dT, and it is obtained by differentiating Eq. (4.22)

P(E, T)dT = SELE) dT = NLJ(E) d7dxi= LLU(E) dT
dT dT o(E) odT,

(4.23)
where P(E, T) is the probability that an ion with energy E will
undergo a collision producing an energy transfer in the range T and
T +dT while traversing a distance dx, and is'simply defined as the
ratio of the differential cross-section to the tofal energy-transfer cross-
section.

For the scattering processes described by Figs. 4.2 and 4.3, probabil-
ity functions can be constructed which describe the probability of a
collision producing a deflection 6. in the incident projectile’s trajectory
or the probability of scattering the projectile into the angular range
between 6, and 6. + d6, while it travels a distance dx. These probabil-
ity functions are given, respectively, by

B0 ) o(6.)N dx (4.24a)
and
dP(@6, V)
P(6., b)db = Q e NM dpdx = LMd (4.24b)

dp dp o(6.) dp
where o(6,) is the total angular scattering cross-section given in Eq.
(4.3) and do(6,) is the differential angular scattering cross-section
given in Eq. (4.4). An expression similar to Eq. (4.23) can also be
constructed for the differential angular scattering cross-section as a
function of the impact parameter.

Following an analogous route to the development of the differential
energy cross-section given in Eq. (4.23), the probability function for a
particle with energy E being scattered into a solid angle dQ in the
angular region between 6. and 6, + d6, is given by
|}

P(E, Q)dQ = Mdg = MN dx dQ (4.25)
dQ dQe
As an example, the Rutherford backscattering cross-section (g —
180°) for 1 MeV “He incident on Si was shown to be 1.3 x 10-2¢ cm
(Section 4.2). If the Si target (N =5 x 10% atoms/cm®) is 10 nm thick
(dx =10"%cm), then Ndx = 3:% 1016 atoms/cm?. The probability,
P(E, Q), of this scattering event is 6.5 X 10~%. For forward scattering
at 2°, the corresponding probability is 0.65, indicating that nearly every

vy
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incident ion experiences a forward scattering event in travsersmg the
film. As Eq. (4.25) shows, the probability of a scattering event

ing increases linearly with layer thickness. '
ocf:l“lllgutlii};r;ndence on dQ in Eq. (4.25) can be removed by applying

Eq. (4.6), dQ = 2msin 6, d6., which allows us to write Eq. (4.25) as

da(E) " { do(E) 6. (4.26
P(E, Q)dQ =2nNdxd%—2n51n6cNdx 2o 6. (4.26)

The relationship between energy transfer 7' and .the scattering ar.lg_le
0., or the solid angle Q, can be found by setting the probability
fL:r,lctions given by Egs. (4.23) and (4.26) equal to each other:

P(E, T)dT = P(E, Q)dQ

which is equivalent to

do(6
49(E) 41 = 2nsin 8, a6, 370
or :
do(E) _ 57 gip g,| 0% doX6e) (4.27)
T a0

The transferred energy T is given in Eq. (3.26) as

T = Tysin?(6./2) = ATm(1 — cos 6;)
and the differential angular cross-section for scattering into a solid
angle dQ is given by Eq. (4.7) as

do(6) _ b |db
dQ sin 6. |d6,
which allows us to rewrite Eq. (4.27) in the form
do(E) _ 4m do(6,) s amind N dbj (4.28)
dT Ty dQ Ty sin 6, |d6,

This final expression is extremely useful s.ince‘ it allows us todc.lfitermig;

the differential energy-transfer cross-section if t'he angular 1d eren i

cross-section is known, or if the CM scattering angle and imp
wi.

Pa;?)f:elte&zrsgz ions, (M; =4) incident on Si (M, =28), ng:_

438 keV and 47/Tyy =2.9 x 107 eV, We I;?VG ghown that fgr/dz;f:z

scattering (6, = 180°),do(6,)/dQ = 1.3 X 10** cm”. Thus, do(E)

- 2
3.7 X 107%° cm?/eV. : i .
The total cross-section for a scattering process is determined by
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setting the probability functions described by Egs. (4.23) and (4.24b)
equal to unity. This l;éads to

f Sl = j:%%dT (4.29a)
and b
o(6.) = f: A LT f 2mb db (4.29b)

where Ty, is the maximum transferred energy, given by Eq. (3.27),
Tmin is a lower limit to the energy-transfer process, and b, is the
maximum impact parameter. The total cross-sections given by Egs.
(4.29a) and (4.29b) are equivalent, i.e., o(E) = o(6.). That is, inte-
grating the energy-transfer differential cross-section over all energy
transfers from T,,;, to Ty is the same as integrating over the range of
impact parameters from b, to zero. This equality between the total
cross-sections provides a means for passing between the energy-
transfer differential cross-section and the impact parameter.

4.4 Power law potentials and the impulse approximation

In this section we will examine the relationship between the potential
V(r) and the scattering angle 6. for the collisions where V(r)/E.
remains small throughout the entire collision process. This condition is
realized for collisions where b is large, which in turn leads to small-
angle scattering. g

The scattering cross-section for central force scattering with large
impact parameters can be calculated for small deflections from the
impulse imparted to the particle as it passes the target nucleus. As the
particle with charge Ze approaches the target nucleus, charge Z,e, it
will experience a repulsive force that will cause its trajectory to deviate
from the incident straight line path (Fig. 4.7).

Let p; and p, be the initial and final momentum vectors of the
particle. From Fig. 4.8(a) it is evident that the total change in momen-
tum, Ap = p, — pi, is along the z’ axis, which is the axis correspond-
ing to the condition r = ry;,. In this calculation the magnitude of the
momentum does not change. From the isosceles triangle formed by P,
P,, and Ap shown in Fig. 4.8(a) we have

1
5 6
;LU sin —

Mv 2
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C

Fig. 4.7. The nucleus is assumed to be a point charge at the origin O. At any
istance r, the particle experiences a repulsive force. The particle travels along
i path that is initially parallel to line OA a distance b from it and finally
parallel to line OB, which makes an angle 6. with OA.

(b) ;

: - Mg, 4.8. (a) Momentum diagram for impulse scattering (see Fig. 4.7). Note

that |pi| = |pa, i.e., for elastic scattering the energy and speed of the projectile

g Ao the same before and after the collision. (b) Change-of-variable diagram for
omentum (impulse) approximation.

0, i the limit of 6, << 1,

ﬂ = M = 0,
Mv Wx
1. (4.30) indicates that, at small deflections, 6, can be thought of as
being due to a small impulse, Ap = A(Mv), approximately perpen-

(4.30)

~ lieular to the original direction of motion. This small-angle calculation

Ik commonly called the impulse or momentum approximation.
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The impulse approximation is appropriate for the small-angle large-
impact-parameter collisions that dominate the sequence of scatterings
which determine the charged particle trajectory. In the impulse approx-
imation the change in momentum is given by

Ap =f Fodt (4.31)
or

Ap=1 | Foax (4.32)
VJ/—x

where Fy is the component of the force acting on the ion perpendicular
to its incident direction. By using the geometry of Fig. 4.8(b), the force
may be written with 7 = (x? + b2)!/2 as

_dv(n) _ _dV((x% + bH)A

Fo= 4.33
i dy db hdh)
Then
ap=-L1 9"y 4 )2y (4.34)
v dbJ)-o
or, using Eq. (4.30),
i &b e b e [ Ve (4.35)
My 2E. dbJ-w

for 6. << 1. Eq. (4.35) shows that the angle 6, is obtained from the
potential V(r) by one integration followed by one differentiation.
Using r = (x? + y?)!2 to change the integration variable in Eq. (4.35)

yields
@ 27-172
6c=if (d—V)ﬁ[l— (3)] dr (4.36)
E J-o\dr/r r

Eq. (4.36) is often referred to as the classical impulse approximation to
the scattering integral.

Consider now a screened Coulomb potential of the type V(r) o r 1,
where the screening function can be approximated by the power form
given in Eq. (2.37)

k s=1
x(r/are) = —(“—TF) 4.37)
8\
where s =1, 2, .. ., k; is a numerical constant, and ayy is the screening

radius given by Eq. (2.43). The screened Coulomb potential can be
written as
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V(r) = Cir™* (4.38)
where the constant C; is
2
c| s 2R ks (4.39)
sarg’
Differentiating Eq. (4.38) and inserting into Eq. (4.36) gives
o 21-1/2
g, = i f r‘zr_‘[l L (3) ] dr (4.40)
Ec 5399 n
To solve Eq. (4.40) will require the following change of variable:
r= . (4.41)
sin

where b is the impact parameter and « is a dummy variable. Carrying
out the transformation gives

ik m/2 —sC
90=—5v—%f s dey & 2
bE, Jo VE,

where vy, represents the integral portion of Eq. (4.42) and has the exact

¥ = f sinwdo = ————— (4.43)
0
2r(i + 1)
2

where I'(x) is the gamma function, with values of I'(x) tabulated in
mathematical handbooks. The gamma function solution given in Eq.
(4.43) has been approximated by Lindhard et al. (1968)

12
= 1( 352‘ 1) (4.44)
S

Vs (4.42)

s

~ Combining Eqgs. (4.39) and (4.42) allows us to write the scattering
nngle equation in the compact form

s
g, = Loks (_“TF) (4.45)
€ b
where ¢ is the reduced energy, initially defined in Eq. (3.55):
‘ aTFEc
8 T cot——
2:25e"

The angular differential cross-section can now be derived for the
power law potential using the differential cross-section do(6.), Eq.
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(4.5), and Eq. (4.45). Rewriting Eq. (4.45) in terms of the impact
parameter b

gk |
b =amp|— 4.46
(22 (4.46)
and differentiating b with respect to 6,
Q L\ AT Ysks)l/s i
1 : ( e ) B (4.47)
The angular differential cross-section is
gy ¢ 171 N aty
do(6.) = 2wb —c dé. = CO(W) dé, (4.48)
c

where C, is a constant given by

2
Co = T”(yskoz/s (4.49)

4.5 Power law energy-transfer cross-section

The power law potential energy-transfer differential cross-section can
be obtained using Eq. (4.48) and the CM energy-transfer function, Eq.
(3.26),

Ti= Ty sinz% (4.50)
In the small-angle limit,
¥ WWAais @iy,
—] =sin—=— forf,«<1 A
(TM) guh g ; et
Solving for 6,
T:\2
0.=2— 4.52
=2 (4.2
taking the differential with respect to T
dT
dg, = ——— (4.53)
(T/Ty)"?
and substituting into Eq. (4.48)
2 1/s
T
do(E) = Cpot =M _gr (4.54)

82/5 T1+1/s

Rewriting Eq. (4.54) in terms of the laboratory energy E, and noting
that (Eq. (3.27))
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4AM\M
y (O it s llar 3
(My + M)

and from Eq. (3.35)

Gl ey
Z1Z,e* ]\ M, + M,

we obtain
(0
do(E) = ——=—dT (4.55)
E™ T1+m
where m = 1/s. The constant C,, is given by
7 2 \2m M. \™
C, = igma%}:(i_lzz_e) (_1) (4.56)
2 atr M,

where A, is a fitting variable given by
2m
A = 2m(%”‘-) (4.57)

If x(r) is taken as the Thomas—Fermi screening function, good fits to
the constant k, over various distances corresponding to the range of
ions yield (Winterbon et al., 1970).

Mp =1.309; Ayp =0327; A4 =05 (4.58)
Winterbon et al. (1970) recommend the following values of m for
various regions of &:

m=1/3fore<0.2

m=12for0.08<e<2

m = 1 (Rutherford scattering) for £ = 10

The validity of Eq. (4.54) can be determined by considering Ru-
therford scattering where the potential is unscreened Coulomb. The
power parameter for this potential is s =m =1. In this case the
screening function, Eq. (4.37), is 1 and therefore k; = 1. From Eq.
(4.44), y1 =1, and C; is simply equal to 27. For s =1, Eq. (4.56)
reduces to

T M,
C) = —(2Z,Z,*"— 4.59
L (2Z,Z5¢%) My (4.59)
For the pure Coulomb condition, the power law equation, Eq. (4.55),

reduces to

M
do(Ey= L z0 2 sayaih, 4T (4.60)
4 M, E,T?
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We now compare this result with the differential energy-transfer
cross-section obtained using the Rutherford cross-section given by Eq.
(4.20),

2
do(6,) = ( o ) dQ
4E.) sin*(6./2)

The transformation from do(6.)/dQ to do(6.)/dT is made with the
help of Eq. (4.28)

do(E) _ 4m do(6.)

dT Ty dQ

which allows us to write the differential of the energy-transfer function
with respect to the scattering angle for the Coulomb potential as

2 47Tyd 4
da(E)=( o ) 277 Sl =£(ﬁ) ﬁdT
4E.] Tisin*(6.2) 4\E./ T?
Substituting for E., Ty, and o gives
o M,E,
M, + M,
4M M,
Ty = ———_F,
(M, + M)
W= 27,2

which leads to
2)2 % ar
M, E,T?
A comparison of this result with the power law derived equation, Eq.
(4.60), shows them to be identical.

do(E) = %(ZZlZze

4.6 Reduced cross-section

As the previous sections have shown, the power law potential can
greatly simplify the calculation of the energy-transfer differential cross-
section. However, the differential cross-section is still a function of six
major parameters: do=1(Z,, Z,, E, 6., M, M,). To simplify
differential cross-section calculations even further, J. Lindhard,
V. Nielsen, and M. Scharff introduced a universal one-parameter
differential scattering cross-section equation in reduced notation:

gt 1/2
dg wiftas i(t_)_dt (4.61)
2 132
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Table 4.1. Thomas—Fermi
scattering function £(t12)

112 £(£12)
0.002 0.162
0.004 0.209
0.01 0.280
0.02 0.334
0.04 0.383
0.10 0.431
0.15 0.435
0.20 0.428
0.40 0.385
1 0.275
2 0.184
4 0.107
10 0.050
20 0.025
40 0.0125

After Lindhard et al. (1968).

where ¢ is a dimensionless collision parameter defined by

0

f= 2l = P (_) (4.62)
Ty 2

where T is the transferred energy, Ty is the maximum transferred

energy, and ¢ is the dimensionless energy unit defined in Eq. (3.55) as

£= aTtr il aTFEc
dc Z 1 Z 262
In the above expression, d. is the unscreened (i.e., Coulomb) collision
diameter or distance of closest approach for a head-on collision (i.e.,
b = 0), and arr is the screening distance.

Lindhard et al. (1968) considered f(t'2) to be a simple scaling
function and the variable ¢ to be a measure of the depth of penetration
into the atom during a collision, with large values of ¢ representing
small distances of approach. Tabulated data for f(tl/ 2) for the Thomas—
Fermi atom are presented in Table 4.1. Fig. 4.9 shows a plot of the
tabulated data together with an analytical approximation (Winterbon

et al., 1970)

£(£12) = A eVO[1 + (2N £2P)2P32 (4.63)
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where
A=l 300

Also plotted in Fig. 4.9 are the various forms of f(t'2) for power law
scattering. At small values of ¢, the function f(¢172) asymptotically
approaches f(¢2) = 1t which is a special case of the more general
power law approximation

) = A, e (4.64)

where the values for A,, are listed in Eq. (4.58) and A’ = 4,;3. Eq.
(4.64) approximately describes scattering from a potential of the form
V(r) o< r=5 = r~Y™_ At low energies the collisions become less pene-
trating (small ¢), and the scattering by screened Coulomb potentials is
determined by regions with large values of s. In this situation the:
interaction during collisions involves the outer part of the atom and
increases with increasing ¢. For high-energy collisions, where s <2,
screening effects are minimal since interactions primarily involve the
inner parts of the atom, and f(+'2) decreases with increasing .

On examining Fig. 4.9, we see that the potential of the form
V(r)<r~® (i.e., m=1/3) is an excellent approximation to the

Rutherford

=3 Potential
(f=1.309t"7)

Scattering

—= r~! Potential
Dl (f=0.61712)
r—2 Potential

1 1 |
198 1072 107! 1 10
€

Fig. 4.9. Reduced differential cross-section calculated from Thomas—Fermi
potential. Ordinate is f(¢1/2) = 223 do/dt(ma?)~1; abscissa is & = t¥2/sin (6/2).
Thick solid line ranging over £ = 10-3-10: Eq. (4.61). Dashed line: Eq. (4.63).
Thin solid lines are calculated using the power law cross-section formula, Eq.
(4.64). For large values of 12 (i.e., large €), the curve approaches Rutherford
scattering (i.e., an r~! potential), while at small values of ¢2 (i.e., small &),
the curve approaches an -3 potential. The horizontal line represents f(¢!/2) for
an r~2 potential. (After Winterbon et al., 1970.)
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Table 4.2. Fitting parameters for the scattering function f(+'/?)

Screening function y m q t2 range
Thomas-Fermi 1.309 0.333 0.667 103-10
Bohr, Eq. (2.38) 237 0.103 0.570 1073-10
Lenz-Jensen, Eq. (2.39) 2.92 0.191 0.512 10-3-10
Lindhard, Eq. (2.33) 0.625 0.333 1.24 10-3-10
Lindhard, Eq. (2.34) 0.879 0.333 1.24 1073-10
Moliere, Eq. (2.36) 3.07 0.216 0.530 10-3-10
KO? 2.54 0.25 0.475 10-3-10
ZBL, Eq. (2.52) 5.01 0.203 0.413 10-6-10¢
Kr-Cb 3.35 0.233 0.445 10-6-10*
After Winterbon (1972).

“Kalbitzer and Oetzmann (1980).
PLittmark and Ziegler (1981); Wilson et al. (1977).

Thomas-Fermi function (') at small values of ¢. Fig. 4.9 also shows
that when s =2 (m = 1/2), f(¢'/%) = constant = 0.327, which is a rea-
sonable overall approximation, and for s = 1 the unscreened Coulomb
potential (Rutherford scattering) is approximate for ¢ >> 1.

The Thomas—Fermi function f(¢2) described by Eq. (4.63) can be
generalized to provide a one-parameter universal differential scattering
cross-section equation for other interatomic potentials. The general
form of Eq. (4.63) is

f(£12) = AY2-m[1 + (2Asl~m)eYa (4.65)
where A, m, and g are fitting variables, with A =1.309, m = 1/3 and
q = 2/3 for the Thomas—Fermi version of f(¢'/2) given in Eq. (4.63).
Additional values for A, m, and g for other forms of the screening
function are presented in Table 4.2.

4.7 Hard-sphere potential

In some problems in ion-solid interactions, a great deal of physical
insight can be obtained by assuming that the projectile and target

~ atoms interact like colliding billiard balls (elastic hard spheres). The

interatomic potential which represents this condition is the hard-sphere
potential given in Eq. (2.6). The hard-sphere approximation is most
applicable for near head-on collisions, with the impact parameter b
approaching zero and the scattering angle 6. approaching 7 (see Fig.
3.7(b)).
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A hard-sphere collision in the center of mass (CM) between two
particles with masses M; and M, and radii R, and R, is displayed in
Fig. 4.10. For a hard-sphere collision, the distance of closest approach

is given by

Tmin = I + o (466)
where r; = R; and r, = R,. Comparing Figs. 4.10 and 3.7(b), we see
that r, and r, can be defined by Eq. (3.42), where r is replaced by 7y,

M,

S RV (4.67a)
Qoo M (e
and
M,
SO e W (4.67b)
2 i b . min

From Figs. 2.2(a) and 4.10, we see that the interaction potential energy

will only apply at contact between the hard spheres. The hard-sphere

potential energy is simply equal to the CM kinetic energy, Eq. (3.16b),

M,
V(rmm) = ———E (4.68)
( mn) M1 o Mz 0

The relationship between the impact parameter b and rp;, is ob-

tained from Fig. 4.10:

Fig. 4.10. The hard-sphere scattering geometry.
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b = rpincOS (—Z—c) (4.69)

The angular differential cross-section is obtained by differentiating Eq.
(4.69) and using Eq. (4.5):

6
do(68,) = mri,sin ?C cos % de (4.70)

The energy-transfer differential cross-section is obtained by differenti-
ating Eq. (4.69) and using Eq. (4.28):
( do(E) _ T in
dT i
The total collisional cross-section for a particle with energy E transfer-
ring energy T can be approximated following Eq. (4.3):
o(E) = T min (4.72)
" Combining Egs. (4.71) and (4.72) with Eq. (4.23), we can easily
calculate the hard-sphere probability of an energetic particle with

energy E producing a recoil in the energy range between T and
BT + dT:

(4.71)

P(E, TydE = EiE) o o OT (4.73)
o(E) dT Tor

The major advantage of Eqs. (4.71)-(4.73) is their lack of depend-
ence on E, which simplifies the integration needed in calculating
_energy-loss and radiation-damage values in Chapters 5 and 7.
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Problems

4.1 Using Eq. (4.20), calculate the differential scattering cross-
section per solid angle for 100 keV Ar ions incident on Ni for
laboratory scattering angles of 10°, 15°, 45°.

4.2 Using Eq. (4.25), calculate the probability P(E, Q) for
100 keV Ar ions incident on Ni for laboratory scattering angles
of 10° and 45° for Ni thicknesses of 10 and 100 nm.

4.3 Show that Eq. (4.61) can be written in the form

7a® TAP f(t

ol P T3/2

4.4 For M < M, (He on Si), M, = M, (Si on Si), and M; > M,
(Xe on Si), calculate values of the dimensionless collision
parameter ¢, 6., and the laboratory scattering angle, 6, for
values of 7T/Ty =0.25, 0.5, and 0.75 (Eq. (4.62)). Assume
E, =100 keV in all cases.

4.5 Using values from problem 4.4 and Table 4.1, calculate
do/dT.

4.6 Solve the power law cross-section, Eq. (4.55), for the hard-
sphere power law parameter m =0 and compare with Eq.
(4.71) to find C,.

da =

Problems 87

From the Coulomb cross-section described in Eq. (4.60),
derive a general expression for the total cross-section using
Eq. (4.29).

For 1 MeV *He ions on Si, what is o(E) for Ty, = 15 eV (see
problem 4.7)?



